Discrete Mathematics

Chapter 10

Section 10.1

Graphs and graph Models

Introduction to Graphs

- Definition: A simple graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of V , a nonempty set of vertices, and E , a set of unordered pairs of distinct elements of V called edges.
\bullet For each $e \in E, e=\{u, v\}$ where $u, v \in V$.
-An undirected graph (not simple) may contain:
-Loops: An edge e is a loop if $e=\{u, u\}$ for some $u \in V$
- Duplicate edges: A graph is called a multi-graph if there is at least one duplicate edge.

Introduction to Graphs

- Definition: A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a set V of vertices and a set E of edges that are ordered pairs of elements in V.
\bullet For each $e \in E, e=(u, v)$ where $u, v \in V$.
- An edge e is a loop if $e=(u, u)$ for some $u \in V$.
\bullet A simple graph is just like a directed graph, but with no specified direction of its edges.

Graph Models

- Example I: How can we represent a network of (bidirectional) railways connecting a set of cities?
-We should use a simple graph with an edge $\{a, b\}$ indicating a direct train connection between cities a and b. Toronto $9 \quad$ Boston

Lübeck

Hamburg

Washington

Graph Models

- Example II: In a round-robin tournament, each team plays against each other team exactly once. How can we represent the results of the tournament (which team beats which other team)?
-We should use a directed graph with an edge (a, b) indicating that team a beats team b. Maple Leafs

Exercise 1

- What might the nodes/edges be if we modeled the following data? Would the graph be best undirected or directed?
- Influence Graph: Identifying data where one person has influence over another.
- Computer network
- Road Map
- The World Wide Web

Graph Terminology

-Definition: Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if $\{u, v\}$ is an edge in G.
\bullet If $e=\{u, v\}$, the edge e is called incident with the vertices u and v. The edge e is also said to connect u and v .

- The vertices u and v are called endpoints of the edge $\{u, v\}$.

Graph Terminology

-Definition: The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

- In other words, you can determine the degree of a vertex in a displayed graph by counting the lines that touch it.
- The degree of the vertex v is denoted by $\operatorname{deg}(v)$.

Graph Terminology

-A vertex of degree o is called isolated, since it is not adjacent to any vertex.

- Note: A vertex with a loop at it has at least degree 2 and, by definition, is not isolated, even if it is not adjacent to any other vertex.
- A vertex of degree 1 is called pendant. It is adjacent to exactly one other vertex.

Graph Terminology

- Example: Which vertices in the following graph are isolated, which are pendant, and what is the maximum degree? What type of graph is it?

Solution: Vertex f is isolated, and vertices a, d and j are pendant. The maximum degree is $\operatorname{deg}(\mathrm{g})=5$.
This graph is a non-simple undirected graph.

Graph Terminology

- Determine the number of its edges and the sum of the degrees of all its vertices:

Result: There are 9 edges, and the sum of all degrees is 18 . This is easy to explain: Each new edge increases the sum of degrees by exactly two.

Graph Terminology

-The Handshaking Theorem: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph with e edges. Then

- $2 \mathrm{e}=\sum_{\mathrm{v} \in \mathrm{V}} \operatorname{deg}(\mathrm{v})$
-Corollary: The total degree of any undirected graph is always even!
- Example: How many edges are there in a graph with 10 vertices, each of degree 6 ?
- Solution: The sum of the degrees of the vertices is $6 \cdot 10$ $=60$. According to the Handshaking Theorem, it follows that $2 e=60$, so there are 30 edges.

Graph Terminology

-Theorem: An undirected graph has an even number of vertices of odd degree.
\bullet Proof: Let V_{1} and V_{2} be the set of vertices of even and odd degrees, respectively (Thus $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\varnothing$, and V_{1} $\cup V_{2}=V$).
-Then by Handshaking theorem

$$
\bullet^{2}|E|=\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V_{1}} \operatorname{deg}(v)+\sum_{v \in V_{2}} \operatorname{deg}(v)
$$

${ }^{-}$Since both $2|E|$ and $\sum_{\mathrm{v} \in \mathrm{V}_{1}} \operatorname{deg}(\mathrm{v})$ are even,

- $\sum_{\mathrm{v} \in \mathrm{V}_{2}} \operatorname{deg}(\mathrm{v})$ must be even.
- Since $\operatorname{deg}(\mathrm{v})$ is odd for all $\mathrm{v} \in \mathrm{V}_{2},\left|\mathrm{~V}_{2}\right|$ must be even. QED

Exercise 2

- Draw a graph with the specified properties or show that no such graph exists:
- A graph with 6 vertices with the following degrees: 1,1,2,2,3,4
- A graph with 4 vertices of degrees 1,2,3,4
- A simple graph with 4 vertices of degrees 1,2,3,4

Exercise 3

- A graph has 5 vertices of degrees $1,1,4,4$, and 6 . How many edges does the graph have?
- Is it possible in a group of 13 people for each to shake hands with exactly 7 others?
- Is it possible to have a graph with 15 edges where each vertex has degree 4 ?
- Is it possible to have a simple graph with 10 edges where each vertex has degree 4 ?

Graph Terminology

-Definition: When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v, and v is said to be adjacent from u.
-The vertex u is called the initial vertex (or source) of (u, v), and v is called the terminal vertex (or target) of (u, v).
-The initial vertex and terminal vertex of a loop are the same.

Graph Terminology

-Definition: In a graph with directed edges, the indegree of a vertex v, denoted by $\operatorname{deg}(v)$, is the number of edges with v as their terminal vertex. ${ }^{-}$The out-degree of v, denoted by $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex.

- Question: How does adding a loop to a vertex change the in-degree and out-degree of that vertex?
-Answer: It increases both the in-degree and the out-degree by one.

Graph Terminology

-Example: What are the in-degrees and out-degrees of the vertices a, b, c, d in this graph:

Graph Terminology

-Theorem: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with directed edges. Then:

- $\sum_{\mathrm{v} \in \mathrm{V}} \operatorname{deg}-(\mathrm{v})=\sum_{\mathrm{r} \in \mathrm{V}} \operatorname{deg}^{+}(\mathrm{v})=|\mathrm{E}|$
- This is easy to see, because every new edge increases both the sum of in-degrees and the sum of out-degrees by one.

Exercise 4

- What is the maximum number of edges possible in a simple graph on n vertices?
- What is the maximum number of edges possible in a directed graph on n vertices (loops included)?

Special Graphs

-Definition: The complete graph on n vertices, denoted by K_{n}, is the simple graph that contains exactly one edge between each pair of distinct vertices.

K_{1}

K_{3}

Exercise 5

- What is the degree of each vertex in the complete graph K_{9} ?
- What is the total degree of K_{9} ?
- How many edges are there in K_{9} ?
- How many edges are there in K_{n} ?
- What is the degree of a vertex in K_{n} ?
- What is the total degree of K_{n} ?

Special Graphs

- Definition: The cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 3$, consists of n vertices $\mathrm{v}_{\mathrm{v}}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and edges $\left\{\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}-\mathrm{p}}\right.$, $\left.v_{n}\right\},\left\{v_{n}, v_{1}\right\}$.

C_{3}

C_{4}

C_{5}

C_{6}

Special Graphs

- Definition: We obtain the wheel W_{n} when we add an additional vertex to the cycle C_{n}, for $\mathrm{n} \geq 3$, and connect this new vertex to each of the n vertices in C_{n} by adding new edges.
W_{3}
W_{4}

W_{5}

W_{6}

Special Graphs

- Definition: A simple graph is called bipartite if its vertex set V can be partitioned into two disjoint nonempty sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} with a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}).
- For example, consider a graph that represents each person in a village by a vertex and each marriage by an edge.
-This graph is bipartite, because each edge connects a vertex in the subset of males with a vertex in the subset of females (if we think of traditional marriages).

"Special Graphs

 \bullet Example I: Is C3 bipartite?

No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

Example II: Is C_{6} bipartite?

Yes, because we can display C_{6} like this:

Special Graphs

- Definition: The complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. Two vertices are connected if and only if they are in different subsets.

$K_{3,2}$

$K_{3,4}$

Exercise 6

- Draw the complete bipartite graphs for $\mathrm{K}_{2,2}, \mathrm{~K}_{2,3}$, and $K_{3,4}$

Exercise 8

- What is the degree of each vertex in the complete bipartite graph $\mathrm{K}_{4,5}$?

Operations on Graphs

- Definition: A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.
-Note: Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H .
-Example:

K_{5}

subgraph of K_{5}

Operations on Graphs

- Definition: The union of two simple graphs $\mathrm{G}_{1}=$ $\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$.

The senion
G_{1}

G_{2}

$G_{1} \cup G_{2}=K_{5}$

Exercise 9

- Let G be a simple graph with $V=\{a, b, c, d, e\}$ and $E=\{\{a, a\},\{a, b\},\{a, c\},\{b, c\},\{c, d\}\}$.
- Is $H=\left(V_{H}, \mathrm{E}_{\mathrm{H}}\right)$ with $\mathrm{V}_{\mathrm{H}}=\{a, \mathrm{~b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{E}_{\mathrm{H}}=\{\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\}\}$ a subgraph of G ?
- If so, find a second subgraph L such that $H \cup L=G$

Section 10.3

Representing Graphs, Walks, Paths and Circuits, Connectedness

Representing Graphs

Vertex	Adjacent Vertices
a	b, c, d
b	a, d
c	a, d
d	a, b, c

Initial Vertex	Terminal Vertices
a	c
b	a
c	
d	$\mathrm{a}, \mathrm{b}, \mathrm{c}$

Representing Graphs

- Definition: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph with $|\mathrm{V}|=$ n . Suppose that the vertices of G are listed in arbitrary order as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$.
-The adjacency matrix A (or A_{G}) of G , with respect to this listing of the vertices, is the $\mathrm{n} \times \mathrm{n}$ zero-one matrix with 1 as its (i, j) th entry when v_{i} and v_{j} are adjacent, and o otherwise.
- In other words, for an adjacency matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$,
$\bullet a_{i j}=1 \quad$ if $\left\{v_{i}, v_{j}\right\}$ is an edge of G,
$\mathrm{a}_{\mathrm{ij}}=\mathrm{o}$ otherwise.

Representing Graphs

-Example: What is the adjacency matrix A_{G} for the following graph G based on the order of vertices a, b, c, d ?

Note: Adjacency matrices of undirected graphs are always symmetric.

Graph Walks

-Definition: A walk of length n from u to v , where n is a positive integer, in an undirected graph is a sequence of edges $e_{1}, e_{2}, \ldots, e_{n}$ of the graph such that $e_{1}=\left\{x_{0}, x_{1}\right\}, e_{2}=\left\{x_{1}, x_{2}\right\}, \ldots, e_{n}=\left\{x_{n-1}, x_{n}\right\}$, where $\mathrm{x}_{\mathrm{o}}=\mathrm{u}$ and $\mathrm{x}_{\mathrm{n}}=\mathrm{v}$.
-When the graph is simple, we denote this path by its vertex sequence $\mathrm{x}_{\mathrm{o}}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$, since it uniquely determines the path.
-The path or circuit is said to pass through or traverse $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}-\mathrm{r}}$.

Paths and Circuits

-A trivial walk from \mathbf{v} to \mathbf{v} consists of the single vertex \mathbf{v}, and no edges.
-The path is a closed-walk if it begins and ends at the same vertex, that is, if $\mathbf{u}=\mathrm{v}$.
-The length of a walk is the number of edges in the walk
-A trail is a walk with no repeated edges
-A path is a walk with no repeated vertices

- A circuit is a closed walk with no repeated edges
- A path or circuit is simple if it has no repeated vertices (except the first and last in a circuit).
-A non-trivial simple circuit is called a cycle

Exercise 1

- In the given graph, determine whether each of the following is a path, simple path, circuit, or simple circuit

1. abcfb
2. abcf
3. fabfcdf
4. fabcdf

5. abfb
6. cfbbc
7. bb
8. e

Connectivity

- Let us now look at something new:
-Definition: An undirected graph is called connected if there is a walk (or a path, or a simple path) between every pair of distinct vertices in the graph.
-For example, any two computers in a network can communicate if and only if the graph of this network is connected.
- Note: A graph consisting of only one vertex is always connected, because it does not contain any pair of distinct vertices.

Exercise 2: Connected or not?

Connectivity

- A graph that is not connected is the union of two or more connected subgraphs, each pair of which has no vertex in common.
- A subgraph H is a connected component of a graph G if:
- H is connected
- H is not a proper subgraph of any connected subgraph of G \bullet It follows that a graph is connected $\Leftrightarrow G$ has only one connected component

Exercise 3

-Example: What are the connected components in the following graph?

Solution: The connected components are the graphs with vertices $\{a, b, c, d\},\{e\},\{f\}$, \{g, h, i, j\}.

Exercise 4

- What is the minimum number of edges possible in a connected graph on 4 vertices?

Section 10.5

Trees

What is a Tree?

- A graph is called acyclic if it has no non-trivial circuits
- A tree is an acyclic, connected graph
- A trivial tree is a graph with a single vertex
- A forest is an acyclic, disconnected graph
- A tree is a special kind of simple graph

Exercise 1

- Which of the following is a tree?

Tree Example—Decision Tree

Tree Example: Directory Structures

Tree Example: Parse Tree

- "The young man caught the ball"

Every Graph Contains A Tree

- Let G be any graph
- If G has no cycles, then it is a tree!
- If G does have cycles, for each cycle
- Remove one edge from the cycle
- G will still be connected. Why?
- The resulting graph G' will be an acyclic tree

Tree Properties

- Let $\mathrm{T}=\{\mathrm{V}, \mathrm{E}\}$ be a graph. The following are equivalent:
a) T is connected and removing any edge from T disconnects T into two subgraphs that are trees (subtrees)
b) There is a unique path between any two distinct vertices v and w in T
c) T is a tree

Exercise 3

- Is a graph with 12 vertices and 12 edges a tree?
- Is any graph with 5 vertices and 4 edges a tree?
- Is any connected graph with 5 vertices and 4 edges a tree?

Exercise 4

- Let \boldsymbol{T} be a graph on \boldsymbol{n} vertices. Prove that the following are all equivalent:
a) T is a tree
b) \boldsymbol{T} is connected and has $\boldsymbol{n}-\boldsymbol{1}$ edges
c) \boldsymbol{T} is acyclic and has $\boldsymbol{n}-\boldsymbol{1}$ edges

Rooted Trees and Tree Traversals

What is a rooted tree?

Tree Definitions

- The root is any vertex in a tree that is selected to be the root
- Level(v) = \#edges it takes to reach v from the root
- height(T) = the maximum level of any vertices in T
- Children $(\mathrm{v}) \rightarrow$ all vertices adjacent to v whose level is Level(v) + 1
- Parent $(\mathrm{v}) \rightarrow$ The unique vertex that is adjacent to v whose level is Level(v) - 1
- A leaf is a node with no children.
- An ancestor v is any vertex w that lies on the path from the root to v . v would be considered a descendant of all such vertices.

Exercise 1

Find the:
a) Level of \mathbf{e}
b) Height of the tree
c) Children of t d) Parent of t
e) Ancestors of g
f) Descendants
g) Leaves of the tree

Exercise 2
Design a tree to represent the table of contents of a book:
C_{1}
S. 1

S1.2
S1.3
C2
S2.1
S2. 2
S2.2.1
S2.2.2
C3
S3. 1
S3.2

Binary Trees

- A Binary Tree is a rooted tree in which each internal vertex has at most two children
- Since there are only two, they get special names:
- Left child
- Right child
- If there is only one, call it the left child
- Subtrees get special names too!
- The left subtree of a vertex v is the subtree rooted at the left child of v
- The right subtree of a vertex v is the subtree rooted at the right child of v
- A full (or complete) binary tree is a binary tree in which each internal vertex has exactly two children

Exercise 3

- Use a complete binary tree to represent the following mathematical expressions:
- $a+b$
- $(a+b) \div\left(\left(c^{*} d\right)-e\right)$

M-ary Trees

- An m-ary tree is a rooted tree in which each internal vertex has at most m children
- A full m-ary tree is an m-ary tree in which each internal vertex has exactly m children
- $m=2$ (binary tree), $m=3$ (ternary tree)

Theorem 1

- Let T be a full m-ary tree with \boldsymbol{n} vertices, \boldsymbol{i} internal vertices, and L leaves. Then each of the following is true:

$$
\begin{aligned}
& \text { a) } n=m i+1 \\
& \text { b) } L=i(m-1)+1 \\
& \text { c) } i=\frac{L-1}{m-1}=\frac{n-1}{m}
\end{aligned}
$$

Corollary to Theorem 1

- Let T be a full binary tree with \boldsymbol{n} vertices, \boldsymbol{i} internal vertices, and L leaves. Then each of the following is true:

$$
\text { a) } n=2 i+1
$$

$$
\begin{aligned}
& \text { b) } L=i+1=\frac{n+1}{2} \\
& \text { c) } i=L-1=\frac{n-1}{2}
\end{aligned}
$$

Exercise 4

- How many vertices does a full ternary tree with 11 leaves have?
- Is there a full binary tree with 12 vertices?
- How many edges does a full 5-ary tree with 100 internal vertices have?
- Is there a full binary tree that has 10 internal vertices and 13 leaves?

Exercise 5

- The Wimbledon tennis championship is a singleelimination tournament in which a player is eliminated after a single loss. If 31 women compete in the championship, how many matches must be played to determine the champion?

Exercise 6

- Suppose someone starts a chain letter. Each person who receives the letter is asked to send it to 5 other people.
- If everyone who receives the letter follows the instructions, how many people can be reached in a tree of height 2 ?
- If 125 people received the letter, but did not send it, determine the following:
- How many people sent the letter?
- How many people in total have seen the letter, including the person who started it?

Exercise 7

- A computer lab has a single wall socket with 6 outlets in it. Using power strips with 6 connections each, how many extension cords do we need to power 46 all-inone computers?

Balanced Trees

- An m-ary tree of height \boldsymbol{h} is balanced if every leaf is at level \boldsymbol{h} or \boldsymbol{h} - $\mathbf{1}$.
- Which of the following trees are balanced?

Binary Tree Traversals

Tree Traversals

- In mathematics, we're always studying tree properties, and they are useful
- In computing, we're not just studying trees, we are storing and processing trees
- A tree traversal is a method for efficiently retrieving information from a tree
- There are three different traversals that have different applications:
- Pre-order
- In-order
- Post-order

Preorder Traversal of a Binary Tree

- Let T be a rooted binary tree with root R , and left subtree T_{L} and right subtree T_{R}.
- The Preorder traversal of T is as follows:
- 'Visit' R (print value, perform computation, etc.)
- Perform a preorder traversal on T_{L}
- Perform a preorder traversal on T_{R}

About Recursion

- Recursion is weird...but really cool!
- The pre-order procedure is very easy to define because it uses itself as part of the definition!
- 'Visit' R (print value, perform computation, etc.)
- Perform a preorder traversal on T_{L}
- Perform a preorder traversal on T_{R}
- If we follow this precisely, then it will gradually take us throughout the entire tree!

Exercise 1

- Find the pre-order traversa $\underset{r}{ } f$ the following tree (ROOT-LR):

Post-Order and In-Order Traversals

- As before, let T be a rooted binary tree with root R , and left subtree T_{L} and right subtree T_{R}.
- The post-order traversal of T is:
- Perform a post-order traversal of T_{L}

- The in-order traversal of T is:
- Perform a post-order traversal of T_{L}
- 'Visit' R

- Perform a post-order traversal of T_{R}

Exercise 2

- Find the Post-Order (L-R-Root) traversal:

Exercise 3

- Find the in-order (L-Root-R) traversal:

