Discrete Mathematics

Chapter 10

Section 10.1

Graphs and graph Models

Introduction to Graphs

• **Definition:** A **simple graph** G = (V, E) consists of V, a nonempty set of vertices, and E, a set of **unordered pairs** of **distinct** elements of V called edges.

- For each $e \in E$, $e = \{u, v\}$ where $u, v \in V$.
- •An undirected graph (not simple) may contain:
 - •Loops: An edge e is a loop if $e = \{u, u\}$ for some $u \in V$
 - •Duplicate edges: A graph is called a multi-graph if there is at least one duplicate edge.

Introduction to Graphs

•**Definition:** A **directed graph** G = (V, E) consists of a set V of vertices and a set E of edges that are ordered pairs of elements in V.

- For each $e \in E$, e = (u, v) where $u, v \in V$.
- •An edge e is a loop if e = (u, u) for some $u \in V$.

•A simple graph is just like a directed graph, but with no specified direction of its edges.

Graph Models

• **Example I:** How can we represent a network of (bidirectional) railways connecting a set of cities?

•We should use a **simple graph** with an edge {a, b} indicating a direct train connection between cities a and b. Toronto

Lübeck New York Hamburg

Graph Models

• Example II: In a round-robin tournament, each team plays against each other team exactly once. How can we represent the results of the tournament (which team beats which other team)?

•We should use a **directed graph** with an edge (a, b) indicating that team a beats team b. Maple Leafs

- What might the nodes/edges be if we modeled the following data? Would the graph be best undirected or directed?
 - Influence Graph: Identifying data where one person has influence over another.
 - Computer network
 - Road Map
 - The World Wide Web

•**Definition:** Two vertices u and v in an undirected graph G are called **adjacent** (or **neighbors**) in G if {u, v} is an edge in G.

• If e = {u, v}, the edge e is called **incident with** the vertices u and v. The edge e is also said to **connect** u and v.

•The vertices u and v are called **endpoints** of the edge {u, v}.

• **Definition:** The **degree** of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

• In other words, you can determine the degree of a vertex in a displayed graph by **counting the lines** that touch it.

•The degree of the vertex v is denoted by **deg(v)**.

•A vertex of degree o is called **isolated**, since it is not adjacent to any vertex.

•Note: A vertex with a loop at it has at least degree 2 and, by definition, is not isolated, even if it is not adjacent to any other vertex.

•A vertex of degree 1 is called **pendant**. It is adjacent to exactly one other vertex.

• Example: Which vertices in the following graph are isolated, which are pendant, and what is the maximum degree? What type of graph is it?

Solution: Vertex f is isolated, and vertices a, d and j are pendant. The maximum degree is deg(g) = 5. This graph is a non-simple undirected graph.

• Determine the number of its edges and the sum of the degrees of all its vertices:

Result: There are 9 edges, and the sum of all degrees is 18. This is easy to explain: Each new edge increases the sum of degrees by exactly two.

•**The Handshaking Theorem:** Let G = (V, E) be an undirected graph with e edges. Then

•2e = $\sum_{v \in V} deg(v)$

•Corollary: The total degree of any undirected graph is always even!

•Example: How many edges are there in a graph with 10 vertices, each of degree 6?

•Solution: The sum of the degrees of the vertices is 6.10 = 60. According to the Handshaking Theorem, it follows that 2e = 60, so there are 30 edges.

•**Theorem:** An undirected graph has an even number of vertices of odd degree.

• **Proof:** Let V1 and V2 be the set of vertices of even and odd degrees, respectively (Thus V1 \cap V2 = \emptyset , and V1 \cup V2 = V).

Then by Handshaking theorem

 $\mathbf{2}|\mathbf{E}| = \sum_{\mathbf{v} \in \mathbf{V}} \deg(\mathbf{v}) = \sum_{\mathbf{v} \in \mathbf{V}_1} \deg(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_2} \deg(\mathbf{v})$

•Since both 2|E| and $\sum_{v \in V_1} deg(v)$ are even,

• $\sum_{v \in V_2} deg(v)$ must be even.

•Since deg(v) is odd for all $v \in V_2$, $|V_2|$ must be even.

- Draw a graph with the specified properties or show that no such graph exists:
 - A graph with 6 vertices with the following degrees: 1,1,2,2,3,4
 - A graph with 4 vertices of degrees 1,2,3,4
 - A *simple* graph with 4 vertices of degrees 1,2,3,4

- A graph has 5 vertices of degrees 1,1,4,4, and 6. How many edges does the graph have?
- Is it possible in a group of 13 people for each to shake hands with exactly 7 others?
- Is it possible to have a graph with 15 edges where each vertex has degree 4?
- Is it possible to have a simple graph with 10 edges where each vertex has degree 4?

•**Definition:** When (u, v) is an edge of the graph G with directed edges, u is said to be **adjacent to** v, and v is said to be **adjacent from** u.

•The vertex u is called the **initial vertex (or source)** of (u, v), and v is called the **terminal vertex (or target)** of (u, v).

•The initial vertex and terminal vertex of a loop are the same.

•**Definition:** In a graph with directed edges, the **in-degree** of a vertex v, denoted by **deg**⁻(**v**), is the number of edges with v as their **terminal vertex**.

•The **out-degree** of v, denoted by **deg**⁺(v), is the number of edges with v as their initial vertex.

•Question: How does adding a loop to a vertex change the in-degree and out-degree of that vertex?

•Answer: It increases both the in-degree and the out-degree by one.

• **Example:** What are the in-degrees and out-degrees of the vertices a, b, c, d in this graph:

•**Theorem:** Let G = (V, E) be a graph with directed edges. Then:

•
$$\sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v) = |E|$$

•This is easy to see, because every new edge increases both the sum of in-degrees and the sum of out-degrees by one.

• What is the maximum number of edges possible in a simple graph on *n* vertices?

• What is the maximum number of edges possible in a directed graph on n vertices (loops included)?

• **Definition:** The **complete graph** on n vertices, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices.

- What is the degree of each vertex in the complete graph K₉?
- What is the total degree of K₉?
- How many edges are there in K₉?
- How many edges are there in K_n?
- What is the degree of a vertex in K_n?
- What is the total degree of K_n?

•**Definition:** The cycle C_n , $n \ge 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}.$

• **Definition:** We obtain the **wheel** W_n when we add an additional vertex to the cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n by adding new edges.

W,

 W_5

 W_6

• **Definition:** A simple graph is called **bipartite** if its vertex set V can be partitioned into two disjoint nonempty sets V₁ and V₂ such that every edge in the graph connects a vertex in V₁ with a vertex in V₂ (so that no edge in G connects either two vertices in V₁ or two vertices in V₂).

• For example, consider a graph that represents each person in a village by a vertex and each marriage by an edge.

• This graph is **bipartite**, because each edge connects a vertex in the **subset of males** with a vertex in the **subset of females** (if we think of traditional marriages).

²Special Graphs •Example I: Is C₃ bipartite?

Example II: Is C₆ bipartite?

V₃

 \mathbf{V}_1

 V_2

Yes, because we can display C_6 like this:

• **Definition:** The **complete bipartite graph** $K_{m,n}$ is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. Two vertices are connected if and only if they are in different subsets.

К_{3,2}

• Draw the complete bipartite graphs for $K_{2,2}$, $K_{2,3}$, and $K_{3,4}$

• What is the degree of each vertex in the complete bipartite graph K_{4,5}?

Operations on Graphs

•**Definition:** A **subgraph** of a graph G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$.

•Note: Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H.

•Example:

K₅

Operations on Graphs

 G_1

•**Definition:** The **union** of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$.

• The mion of G_1 and G_2 is denoted by $G_1 \searrow G_2$.

G,

 $G_1 \cup G_2 = K_5$

- Let G be a simple graph with V = $\{a,b,c,d,e\}$ and E = $\{\{a,a\},\{a,b\},\{a,c\},\{b,c\},\{c,d\}\}.$
 - Is $H = (V_H, E_H)$ with $V_H = \{a, b, c, d\}$ and $E_H = \{\{a, c\}, \{b, c\}, \{c, d\}\}$ a subgraph of G?
 - If so, find a second subgraph L such that $H \cup L = G$

Section 10.3

Representing Graphs, Walks, Paths and Circuits, Connectedness

Representing Graphs

Vertex	Adjacent Vertices
a	b, c, d
Ь	a, d
С	a, d
d	a, b, c

Initial Vertex	Terminal Vertices
a	С
b	a
С	
d	a, b, c

Representing Graphs

• **Definition:** Let G = (V, E) be a simple graph with |V| = n. Suppose that the vertices of G are listed in arbitrary order as $v_1, v_2, ..., v_n$.

•The **adjacency matrix** A (or A_G) of G, with respect to this listing of the vertices, is the n×n zero-one matrix with 1 as its (i, j)th entry when v_i and v_j are adjacent, and o otherwise.

• In other words, for an adjacency matrix $A = [a_{ij}]$,

• $a_{ij} = 1$ if $\{v_i, v_j\}$ is an edge of G, $a_{ij} = 0$ otherwise.
Representing Graphs

• **Example:** What is the adjacency matrix A_G for the following graph G based on the order of vertices a, b, c, d ? $A_G = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

Solution:

Note: Adjacency matrices of undirected graphs are always symmetric.

h

Graph Walks

• **Definition:** A **walk** of length n from u to v, where n is a positive integer, in an **undirected graph** is a sequence of edges $e_1, e_2, ..., e_n$ of the graph such that $e_1 = \{x_0, x_1\}, e_2 = \{x_1, x_2\}, ..., e_n = \{x_{n-1}, x_n\}$, where $x_0 = u$ and $x_n = v$.

•When the graph is simple, we denote this path by its **vertex sequence** $x_0, x_1, ..., x_n$, since it uniquely determines the path.

• The path or circuit is said to pass through or traverse $x_1, x_2, ..., x_{n-1}$.

Paths and Circuits

- •A **trivial walk** from **v** to **v** consists of the single vertex **v**, and no edges.
- •The path is a **closed-walk** if it begins and ends at the same vertex, that is, if u = v.
- •The **length** of a walk is the number of edges in the walk
- •A trail is a walk with no repeated edges
- •A **path** is a walk with no repeated vertices
- •A **circuit** is a closed walk with no repeated edges
- •A path or circuit is **simple** if it has no repeated vertices (except the first and last in a circuit).
- •A non-trivial simple circuit is called a cycle

- In the given graph, determine whether each of the following is a path, simple path, circuit, or simple circuit
- 1. abcfb
- 2. abcf
- 3. fabfcdf
- 4. fabcdf
- 5. abfb
- 6. cfbbc
- 7. bb
- 8. e

Connectivity

•Let us now look at something new:

• **Definition:** An undirected graph is called **connected** if there is a walk (or a path, or a simple path) between every pair of distinct vertices in the graph.

• For example, any two computers in a network can communicate if and only if the graph of this network is connected.

•Note: A graph consisting of only one vertex is always connected, because it does not contain any pair of distinct vertices.

Connectivity

•A graph that is not connected is the union of two or more connected subgraphs, each pair of which has no vertex in common.

•A subgraph H is a **connected component** of a graph G if:

•H is connected

•H is not a proper subgraph of any connected subgraph of G

• It follows that a graph is connected ⇔ G has only one connected component

•Example: What are the connected components in the following graph?

Solution: The connected components are the graphs with vertices {a, b, c, d}, {e}, {f}, {g, h, i, j}.

• What is the minimum number of edges possible in a connected graph on 4 vertices?

Section 10.5

Trees

What is a Tree?

- A graph is called **acyclic** if it has no non-trivial circuits
 - A tree is an acyclic, connected graph
 - A trivial tree is a graph with a single vertex
 - A **forest** is an acyclic, disconnected graph
- A tree is a special kind of simple graph

• Which of the following is a tree?

Tree Example—Decision Tree

Tree Example: Directory Structures

Tree Example: Parse Tree

• "The young man caught the ball"

Every Graph Contains A Tree

- Let G be any graph
 - If G has no cycles, then it is a tree!
 - If G does have cycles, for each cycle
 - Remove one edge from the cycle
 - G will still be connected. Why?
 - The resulting graph G' will be an acyclic tree

Tree Properties

- Let T = {V,E} be a graph. The following are equivalent:
 - a) T is connected and removing any edge from T disconnects T into two subgraphs that are trees (subtrees)
 - b) There is a unique path between any two distinct vertices v and w in T
 - c) T is a tree

• Is a graph with 12 vertices and 12 edges a tree?

• Is *any* graph with 5 vertices and 4 edges a tree?

 Is any connected graph with 5 vertices and 4 edges a tree?

- Let *T* be a graph on *n* vertices. Prove that the following are all equivalent:
 - a) T is a tree
 - **b**) **T** is connected and has **n 1** edges
 - c) *T* is acyclic and has *n* − *i* edges

Rooted Trees and Tree Traversals

What is a rooted tree?

Tree Definitions

- The root is any vertex in a tree that is selected to be the root
- Level(v) = #edges it takes to reach v from the root
- height(T) = the maximum level of any vertices in T
- Children(v) → all vertices adjacent to v whose level is Level(v) + 1
- Parent(v) → The *unique* vertex that is adjacent to v whose level is Level(v) 1
- A *leaf* is a node with no children.
- An *ancestor* v is any vertex w that lies on the path from the root to v. v would be considered a *descendant* of all such vertices.

Exercise 1 Find the:

- a) Level of **e**
- b) Height of the tree
- c) Children of t
- d) Parent of t
- e) Ancestors of g
- f) Descendants of t
- g) Leaves of the

tree

Exercise 2 • Design a tree to represent the table of contents of a book: C1

S1.1 S1.2 S1.3 C_2 S2.1 S2.2 S2.2.1 S2.2.2 C3 S3.1 S3.2

Binary Trees

- A *Binary Tree* is a rooted tree in which each internal vertex has at most *two children*
- Since there are only two, they get special names:
 - Left child
 - Right child
 - If there is only one, call it the left child
- Subtrees get special names too!
 - The *left subtree* of a vertex v is the subtree rooted at the left child of v
 - The right subtree of a vertex v is the subtree rooted at the right child of v
- A *full (or complete) binary tree* is a binary tree in which each internal vertex has exactly two children

- Use a complete binary tree to represent the following mathematical expressions:
 - a + b
 - $(a + b) \div ((c * d) e)$

M-ary Trees

- An m-ary tree is a rooted tree in which each internal vertex has *at most m children*
- A *full m-ary tree* is an m-ary tree in which each internal vertex has *exactly m children*
- m = 2 (binary tree), m = 3 (ternary tree)

Theorem 1

Let T be a full m-ary tree with *n* vertices, *i* internal vertices, and *L* leaves. Then each of the following is true:

a)
$$n = mi + 1$$

b) $L = i(m-1) + 1$
c) $i = \frac{L-1}{m-1} = \frac{n-1}{m}$

Corollary to Theorem 1

Let T be a full binary tree with *n* vertices, *i* internal vertices, and *L* leaves. Then each of the following is true:
 a) n = 2i + 1

b)
$$L = i + 1 = \frac{n+1}{2}$$

c) $i = L - 1 = \frac{n-1}{2}$

- How many vertices does a full ternary tree with 11 leaves have?
- Is there a full binary tree with 12 vertices?
- How many edges does a full 5-ary tree with 100 internal vertices have?
- Is there a full binary tree that has 10 internal vertices and 13 leaves?

• The Wimbledon tennis championship is a singleelimination tournament in which a player is eliminated after a single loss. If 31 women compete in the championship, how many matches must be played to determine the champion?

- Suppose someone starts a chain letter. Each person who receives the letter is asked to send it to 5 other people.
 - If everyone who receives the letter follows the instructions, how many people can be reached in a tree of height 2?
 - If 125 people received the letter, but did not send it, determine the following:
 - How many people sent the letter?
 - How many people in total have seen the letter, including the person who started it?

• A computer lab has a single wall socket with 6 outlets in it. Using power strips with 6 connections each, how many extension cords do we need to power 46 all-inone computers?

Balanced Trees

- An m-ary tree of height *h* is balanced if every leaf is at level *h* or *h 1*.
- Which of the following trees are balanced?

Binary Tree Traversals

Tree Traversals

- In mathematics, we're always studying tree properties, and they are useful
- In computing, we're not just studying trees, we are *storing* and processing trees
- A tree traversal is a method for *efficiently retrieving information from a tree*
- There are three different traversals that have different applications:
 - Pre-order
 - In-order
 - Post-order
Preorder Traversal of a Binary Tree

- Let T be a rooted binary tree with root R, and left subtree T_L and right subtree T_R.
- The Preorder traversal of T is as follows:
 - 'Visit' R (print value, perform computation, etc.)
 - Perform a preorder traversal on T_L
 - Perform a preorder traversal on T_R

About Recursion

- Recursion is weird...but really cool!
- The pre-order procedure is very easy to define because it *uses itself as part of the definition!*
 - 'Visit' R (print value, perform computation, etc.)
 - Perform a preorder traversal on T_L
 - Perform a preorder traversal on T_R
- If we follow this precisely, then it will gradually take us throughout the entire tree!

Exercise 1

• Find the pre-order traversal of the following tree (ROOT-L-R):

Post-Order and In-Order Traversals

- As before, let T be a rooted binary tree with root R, and left subtree T_L and right subtree T_R.
- The post-order traversal of T is:
 - Perform a post-order traversal of T_L
 - Perform a post-order traversal of T_R
 - 'Visit' R
- The in-order traversal of T is:
 - Perform a post-order traversal of T_L
 - 'Visit' R
 - Perform a post-order traversal of T_R

 $\begin{array}{c} A \\ B \\ C \end{array} \longrightarrow \begin{array}{c} B \\ C \end{array} \\ B \\ C \end{array}$

• Find the Post-Order (L-R-Root) traversal:

• Find the in-order (L-Root-R) traversal:

